Role of blood:

1) Transport
 - O_2 from lungs to cells
 - nutrients from digestive system to cells
 - wastes from excretory system from cells
 - heat (38°C)
 ex: hormones & enzymes to and from cells

2) Regulates pH (**7.35** - **7.45**)
 - carbonate-bicarbonate buffering system

3) Prevents fluid loss by clotting

4) Combats toxins & foreign invaders
 - through phagocytosis

5) Maintains homeostasis
• **Plasma**

 - liquid part of blood
 - straw color 55% of blood volume
 - mostly water (>90% of plasma)
 - carries organic & inorganic molecules

Plasma Proteins:

- albumins (55-65%)
 - regulates blood volume & pressure
- globulins (~ 15%)
 - antibodies
- fibrinogen (~4%)
 - clotting factor

Non-protein nitrogenous substances

- urea; creatine; ammonia

Gases

- oxygen
- carbon-dioxide

Electrolytes

- cations & anions
Blood Histology:
A Specialized Connective Tissue Comprised of

- **Formed elements:**
 - ~45% of blood volume
 - blood "cells"

1) **Erythrocytes (RBC)**
 - biconcave discs
 - lacks nucleus at maturity
 - carries hemoglobin molecule (quaternary structure of protein)
 - iron carrier --> heme + globin

 RBC Function

2) **Leukocytes (WBC)**
 - 3 types of granular leukocytes (produced by bone marrow)
 1) basophils
 2) eosinophils
 3) neutrophils
 - 2 types of agranular leukocytes (produced by lymph tissue)
 1) lymphocytes
 2) monocytes: antigen -antibody response

 WBC Types/Functions

3) **Thromocytes (platelets)**
 - cell fragments
 - assists in clotting
 - clot formation (thrombus)
 - insoluble network of fiber that traps cells
 - fibrinogen --> fibrin
 - prothrombin --> thrombin

 Khan Academy: How do we make blood clots?
• Besides the four blood groups, we also have a factor called the Rh factor in the blood.

• It’s named after the Rhesus monkey (animal they conducted they study on)

• Have it (+) Don’t have it (-)

Bozeman Blood Typing
Hemolytic disease of the newborn

- Anti-Rh antibodies can develop in the mother -they can cross the placenta, destroying the Rh-positive fetus’s RBCs
- the baby may die or be very anemic
- **RhoGAM**
 - A serum containing antibodies against the Rh antigens
 - given to an Rh-negative mother to destroy any Rh-positive fetal cells in her circulation and thereby prevent her production of anti-Rh antibodies

Hemolytic Disease/RhoGAM
Histology of the Heart:

Pericardial sac (parietal pericardium)
- membrane surrounding heart

3 tissue layers:

1) Epicardium (visceral pericardium)
 - outer tissue layer
 - serous membrane that covers the muscular part of the heart
 - secretes a watery fluid (pericardial fluid)
 - lubricates membrane surfaces
 - reduces friction during contractions & relaxations

2) Myocardium
 - middle layer
 - cardiac muscle
 - thick; 3/4 heart's bulk
 - cardiac muscles are branched & connected by intercalated disc's
 - free flowing ions across disc's
 - action potentials easily move from cell to cell

3) Endocardium
 - inner tissue layer
 - glistening membrane lining cavities of the heart
Anatomy of the Heart and vessels

Heart
- cone-shaped
- muscular organ about the size of your fist
- located behind the sternum between lungs
- apex of heart points to left

4 Chambers:
 2 Atria
- upper chambers
 - right atrium & left atrium
 - right atrium is larger than left

 2 Ventricles
- lower chambers
 - right ventricle & left ventricle
 - left ventricle is larger than right

 Septa
- dividing wall of tissue

Interventricular septum
- separates rt. & left ventricles

Interatrial septum
- separates rt. & left atria
Venous & Arterial Connections within the Heart:
- Superior & inferior vena cava to right atrium
- Pulmonary veins to left atrium
- Pulmonary arteries from left ventricle
- Aorta from left ventricle
- Coronary vessels supply cardiac muscle
• **Atrio-ventricular Valves:**
 - prevent backflow of blood at strategic points in heart
 - supported by chordae tendineae (strong fibrous strings)
 - papillary muscles open & close valves
 - **Tricuspid valve:**
 - between right atrium & right ventricle = *deoxygenated blood*
 - **Bicuspid valve (mitral valve):**
 - between left atrium & left ventricle = *oxygenated blood*

• **Semilunar Valves**
 - **Pulmonary semilunar valve:**
 - between right ventricle & pulmonary artery = *deoxygenated blood*
 - **Aortic semilunar valve:**
 - between left ventricle & aorta = *oxygenated blood*
Pathway of blood through the Heart

- Deoxygenated blood enters the atrium from both superior & inferior vena cava.

- Blood is pumped into the ventricle through tricuspid valve.

- Right ventricle pumps blood through semilunar valve into pulmonary artery into lungs.

- From lungs through pulmonary veins (oxygenated blood) into left atrium.

- Blood is pumped into left ventricle through bicuspid valve.

- Left ventricle pumps blood through semilunar valve into aorta to the rest of the body.
Vascular Pathways
-cardiovascular system is divided into two circuits with the heart in between

Pulmonary circulation
-right ventricle of heart through pulmonary artery
-deoxygenated blood is pumped from the body to the lungs
-w/in the lungs C0₂ is released and O₂ is picked up
-oxygenated blood returns from the lungs & enters left atrium

Systemic circulation
-left ventricle of heart through aorta carrying oxygenated blood
-arteries branching from aorta supply blood to major organs & body regions
Coronary circulation

Coronary arteries/veins
- part of systemic circulation
- supply blood to heart itself
- first branch off aortic arch
Conduction system
- provides stimulus of cardiac muscle innervation

• Sinoatrial Node (S-A node):
 - wall of the right atrium near where superior vena cava enters
 - (sinus venous)
 - pacemaker
 - ability to depolarize spontaneously & rhythmically
 - S-A node cells RMP -55 to -60 mV
 - heart cells RMP -80 to -90 mV

• Atrio-ventricular Node (A-V node):
 - located on the side of interatrial septum
 - receives impulses from S-A node
 - relays impulses to specialized cells (Bundle of His) & ultimately into Purkinje fibers which stimulate the muscle cells of the ventricles to depolarize & contract
Physiology of Cardiovascular Circulation

Cardiac Cycle
-one heart beat
-(lub-dub) sounds are heart valves closing
-the first is atrioventricular valves closing
-the second is semilunar valves closing
-2 atria contract at same time
-atrial systole
-2 ventricles contract at same time
-ventricular systole-all 4 chambers relax
-atrial & ventricle diastole

Alila Medical Medial video: Conduction Sytem of the Heart
Blood passes through the following loop of vessels moving away from the heart:

- Arteries
- Arterioles
- Capillaries
- Venules
- Veins

Blood returns to the heart from venules and veins

Blood Vessel Overview
Blood Vessel Features

- **Common features**
 - **Lumen**: the hollow interior through which blood flows
 - **Endothelium**: the inner lining consisting of simple squamous epithelium

- **Unique features**
 Each type of blood vessel has traits that reflect its particular function

List three structural differences between arteries and veins

Structural Differences in Blood Vessels
Veins
- Carry blood back to the heart

Superior vena cava
- Carries blood from the upper body back to the heart

Jugular veins
- Carry blood from head to the heart

Pulmonary veins
- Carry oxygenated blood from the lungs to the heart

Renal vein
- Carries blood from the kidney to the heart

Inferior vena cava
- Carries blood from the lower body back to the heart

Radial vein
- Carries blood from the hand back to the heart

Femoral vein
- Carries blood from the thigh and inner knee back to the heart

Iliac vein
- Carries blood from the pelvic organs and abdominal wall back to the heart